Shads metapopulations, insight from microchemistry studies

Daverat, F ; Nachon, D ; Drouineau, H; Bareille, G; Martin, J; Randon, M; Antunes, C; Basic, T; Belo, A; Berail, S; Brett, A; Clavé, D; Davidson, P; De Almeida, P; Feunteun, E; Jatteau, P; Mateus, C; Mota, M; O'Leary, C; Pécheyran, C; Reveillac, E; Roche, W;

cach Intíre Éireann

• What is a metapopulation ? why is it relevant to address shad ecology

A metapopulation : a population of populations (Levins, 1969)

- Connectivity between populations
- Interdependent dynamics
- Island-continent ?
- Source-sink ?

• Applying metapopulation concept to shads? Shadspopulation dynamics to metapopulation dynamics

Anadromy, dispersal at sea

Large historical distribution area

Reduced actual distribution area (

Large variations of POP. Dynamics -local extinctions (Morrocco, Portugal) -recolonisation in Brittany and Normandy -Population in Tamar (UK)

Adapated from Baglinière et al, 2003

INRAO

How populations could be interdependant?

Individual migrations and population dynamics

Population Group

individual

• How populations could be interdependant ? Individual migrations

- Imprinting ? Homing ?
- Straying ?

INRAe

• How populations could be interdependant ? Population dynamics

Density ? Abundance ? Social cues ? Connectivity

INRA

Metapopulations of shads

Insight from otolith microchemistry : Individual Movements

Composition of juvenile stage River 1

≠

Composition of juvenile stage River 2

Tracer of **natal origin** that can be retrieved at adult stage

Robust tracer of location of River spawning grounds ?

Discrimination of different rivers ?

Set of **Reference values** for **fish location** (water/juveniles)

INRAe

• Robust and predictible tracers Use of 87Sr/86Sr, Sr and Ba

87Sr/86Sr map of France from Wimes et al 2018 Geology

Holt et al 2021; A dendritic network model showing the non-Euclidean relationships among 87Sr/86Sr values across the hydrological system. Adapted from Brennan et al., 2016, Fig. 3, used with permission

INRAe

<i>Rivers</i> 2009 2010	2011	2012	2013	Total							
Adour E.	2		29	31							
Adour R.			6	6							
Aulne			12	12							
Blavet			7	7							
Dordogne		5	66	71							
Garonne		27	37	64							
Lima			4	4							
Loire	4		24	28							
Minho 24 21	25		17	87							
Mondego			15	15							
Nivelle 16				16							
Saison			6	6							
Scorff			10	10							
Vilaine 3	10		6	19							
Vire	7		27	34							
				410							

Adults spawners

Juveniles											
Rivers	2009	2011	2012	2013	Total						
Rivers Adour E. Adour R. Aulne Blavet Dordogne Garonne Lima Loire Minho Mondego	<u>2009</u> 10	<u>2011</u> 4	<u>2012</u> 6	2013 16 3 4	<u>Total</u> 16 3 4 20						
Nivelle Saison Scorff Vilaine Vire				1	1						

At each river, water samples were collected from late May to September 2013, close to historic spawning area of Allis shad.

opulation of Shads insights from microchemistry

h July 2022/ INRAE / Françoise Daverat

Bayesian hierarchical mixture model

Metapopulation of Shads insights from microchemi 5th 8th July 2022/ INRAE / Françoise Daverat

individ

Determination of natal origin of individuals

• Large proportion of locals Qualitative study

High proportion of homing fish

% of local origin

% of non local

• Exchanges within same catchment Qualitative study

In Garonne 72% from Dordogne In Saison 50 % of Adour

In Scorff, 90% of Blavet

Most exchanges between neighbour rivers Qualitative study

- Blavet in Vilaine
- Vilaine in Loire
- Adour and Nivelle in Garonne
- Minho in Lima

long distances exchanges

Ex: A Garonne-Dordogne fish in

Mondego

INRA@

Preliminary results of Diades WP6 WORK IN Qualitative study

Confusion Matrix (Naive Bayes)

River/capture Brittany Tamar Barrow

Brittany	67	2	1
Tamar	0	19	1
Barrow	3	12	22

Work in progress

for Spain/Portugal data

- Origin of Fish caught at sea ?
- Origin of Mondego adults with

Connectivity restored ?

• Dispersal capacity : connectivity at sea Nachon et al, mixing at sea of A. Alosa in the 80's

• Quantifying fluxes of fish between populations Randon et al; accounting for relative abundance of populations

- Natal origin of fish by reproduction river?
 - Homing varying
 - Vire et Aulne = closed pop
 - Exchanges between neighbour rivers
 - A few long distance rivers

INRAe

Metapopulation dynamics and conservation

Source sink dynamics?

 Closed populations in northern part (Vire, Aulne) → recent colonisation (few decades) response to global change ? Origin of first strayers ?

Implication for conservation ?

Isolation by distance \rightarrow consistant with genetic studies (Alexandrino *et al.* (2006); Jolly *et al.* (2012)

Adverse effect of low abundance for dispersal?

Connectivity and interdependence of population calls for large scale management

HENHION DANGER

e soventurer dans le lit de ce cours eou ou sur les les et bancs de gravier au pouvant monter brusquement et a utmoment par suite du fonctionnement es usines hydro-électriques et des irrages.

DANGER

DANGER!

Questions?

Mélanie Gribinski

5th 8th July 2022/ INRAE / Françoise Daverat

Adult Allis shad allocations to natal rivers (Martin et

а

Posterior conditional assignment probabilities were higher than 0.80 for 85% of fish

Natal river

Collection site	Vire	Aulne	Scorff	Blavet	Vilaine	Loire	Charente	Dordogne	Garonne	Adour R.	Oloron	Saison	Nive	Nivelle	Minho	Lima	Mondego	Undetermined
Vire (34)				3	31													
Aulne (12)		11 (92%)	7															1
Scorff (10)				9 (90%)														1
Blavet (7)				7 (100%)														
Vilaine (19)			1	2	16 (84%)													
Loire (28)					3	24 (86%)	1											1
Dordogne (71)							<u>ا</u>	61 (86%)										10
Garonne (64)								46 (72%)		11				3				4
Adour R. (6)		1 1								5 (83%)		1						I
Adour E. (31)		1								13 (42%)	17 (55%)							
Saison (6)										<mark>3 (50%)</mark>			ſ	3				
Nivelle (16)														16 (100%)				
Minho (87)					1										86 (99%)			
Lima (4)															2	2 (50%)		
Mondego (15)	2]							1					1	-11			

A great proportion of individuals hatched and grown <u>in the watershed</u> in which they were collected However, their fidelity to the natal river <u>within the watershed of origin</u> appeared less precise Some individuals strayed into non-natal spawning rivers but <u>originated from neighbouring watersheds</u>

Some non-resident spawning adults <u>travelled long and ultra-long distances</u> between natal and spawning river

17 adults (4% Per classified as "undetermined" indicating that those individuals represent heterogeneöបទ ទៅខ្លាំង៥៨កែងនៅកាច់ទីសេខាម្នាំង៥៨ in the training data

21

Data = otolith chemical composition

5th 8th July 2022/ INRAE / Françoise Daverat

